Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices
نویسندگان
چکیده
Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta-beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing.
منابع مشابه
Multisensory interactions within human primary cortices revealed by BOLD dynamics.
Whether signals from different sensory modalities converge and interact within primary cortices in humans is unresolved, despite emerging evidence in animals. This is partially because of debates concerning the appropriate analyses of functional magnetic resonance imaging (fMRI) data in response to multisensory phenomena. Using event-related fMRI, we observed that simple auditory stimuli (noise...
متن کاملAre the Primary Sensory Cortices Multisensory?
Historically the brain has been viewed as operating in a modular and hierarchical manner. In particular it was previously assumed that each of the primary sensory cortices processed input from a single sensory modality before feeding this information to higher regions of the brain devoted to multisensory integration. This review however outlines a wealth of findings that have emerged in recent ...
متن کاملDistinct Computational Principles Govern Multisensory Integration in Primary Sensory and Association Cortices
Human observers typically integrate sensory signals in a statistically optimal fashion into a coherent percept by weighting them in proportion to their reliabilities. An emerging debate in neuroscience is to which extent multisensory integration emerges already in primary sensory areas or is deferred to higher-order association areas. This fMRI study used multivariate pattern decoding to charac...
متن کاملInteractive Coding of Visual Spatial Frequency and Auditory Amplitude-Modulation Rate
Spatial frequency is a fundamental visual feature coded in primary visual cortex, relevant for perceiving textures, objects, hierarchical structures, and scenes, as well as for directing attention and eye movements. Temporal amplitude-modulation (AM) rate is a fundamental auditory feature coded in primary auditory cortex, relevant for perceiving auditory objects, scenes, and speech. Spatial fre...
متن کاملAudiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices.
The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging (fMRI). Streams of visual ...
متن کامل